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1.0 SUMMARY  

 
Scientists have dreamed of information systems with cognitive human-like skills for 
years. However, constrained by the device characteristics and rapidly increasing design 
complexity under the traditional processing technology, little progress has been made in 
hardware implementation. The recently popularized memristor offers a potential break-
through for neuromorphic computing because of its unique properties including nonvola-
tilely, extremely high fabrication density, and sensitivity to historic voltage/current be-
havior.  
 
In this project, we first investigated the memristor-based synapse design and the corre-
sponding training scheme. Then, the design optimization and its implementation in multi-
synapse systems were analyzed too. With the aid of sharing training circuit and self-
training mode, the performance and energy can be significantly improved. At last, a case 
study of an arithmetic logic unit (ALU) was designed to demonstrate the hardware im-
plementation of reconfigurable system built based on memristor synapses. All the circuit 
design, simulation, layout, and functionality verifications have been completed.  
 

2.0 INTRODUCTION 

 
Neuromorphic computing architectures imitate natural neurobiological processes by 
mimicking the highly parallelized computing architecture of the biological brain. To real-
ize such a novel architecture in hardware, at least two conditions need to be satisfied at 
the technology level: high integration density and ability to record the history of electric 

signals. Neuromorphic computing architectures that have a large volume of memory and 
are adaptable to their environment have demonstrated great potential towards the devel-
opment of high performance parallel computing systems [1]. Most of the research activi-
ties have focused on software or the system level using conventional Von Neumann 
computer architectures [2-3]. Developing a neuromorphic architecture at the chip level by 
mimicking biological systems is another important direction. However, a biological scale 
hardware implementation based on traditional CMOS devices requires extremely high 
design complexity and cost, which is impractical. 
 
The existence of memristor was predicted as early as in 1971 [4], but the first physical 
realization that adopted that term was first reported thirty years later by Hewlett-Packard  
Laboratories (HP Labs) with their TiO2 thin-film device [5]. It soon became clear that 
many more materials with memristive properties had been reported since the 1960’s. Yet 
while these devices had some common behaviors, they each operated according to differ-
ent physical phenomena. The unique properties of the memristor make it promising in 
neuromorphic computing systems. First, prototyped memristor devices have demonstrat-
ed scalability at sub-10 nm scales. Accordingly, the memristor memories can achieve a 
high integration density of 100Gbits/cm

2, several orders higher than the popular flash 
memory technologies [4-5]. Second, the memristor device has an intrinsic and remarka-
ble feature called “pinched hysteresis loop,” which means it can “remember” the total 
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electric charge flowing through it [4,6]. Third, memristance remains unchanged when 
power is turned off. Consequently, memristor-based memory combined with the high-
integration capability and the pinched hysteresis characteristics can be applied to a mas-
sively-parallel, large-scale neuromorphic computing processor architecture. 
 
Many memristor-based circuit designs have been explored, such as crossbar nonvolatile 
memory [8] and FPGA [9]. Strukov et al. integrated digital memory, programmable 
Boolean logic circuit, and neuron networks within a 3D hybrid CMOS/memristor struc-
ture. Rajendran et al. proposed a memristor-based programmable threshold logic array 
[10] and used it in a synapse-neuron structure [11]. However, training circuits and train-
ing schemes for a memristor-based reconfigurable architecture design have not been fully 
explored yet.  
 
Therefore, in this project, we investigated memristor-based reconfigurable design tech-
niques. The structure is built upon single memristor-based synapse and the corresponding 
training circuit design. An 8-bit ALU design built on synapse structures was used as a 
case study to demonstrate its potential in developing a neuromorphic computing proces-
sor architecture. The ALU design composed of ~100 synapses can be adaptively trained 
to realize addition, subtraction, and binary counting functionalities. The circuit design, 
simulation, layout, and functionality verifications have been completed in the project. 
 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

 
3.1. Memristor Theory 

 
Nearly forty years ago, Professor Chua predicted the existence of the memristor – the 
fourth fundamental circuit element, to complete the set of passive devices that previously 
included only the resistor, capacitor, and inductor [4]. The memristor uniquely defines 
the relationship between the magnetic flux ( ) and the electric charge ( ) passing 
through the device, 
 

       .                                      (1) 
 
Considering that magnetic flux and electric charge are the integrals of voltage ( ) and 
current ( ) over time, respectively, the definition of memristor can be generalized as 
 

   (   )   
       (   )

,               (2) 

 
where   is a state variable and  (   ) represents the instantaneous memristance, which 
varies over time. For a “ideal” memristor, neither  (   ) nor  (   ) can be expressed 
only as a function of current  .  
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Based on this mathematical description, these devices remained primarily intellectual cu-
riosities until HP Lab first used these relationships to described the memristive switching 
effect created by moving the doping front along TiO2 thin-film device [4]. Soon, more 
memristive systems were identified according to their behavior, to include spintronics [5-
6], polymeric thin film [12-13], MgO based magnetic tunnel junctions (MTJ) [14-15], 
and AlAs/GaAs/AlAs quantum-well diodes [16]. 
 
An intrinsic and remarkable feature of the memristor is called “pinched hysteresis loop,” 
that is, memristors can “remember” the total electric charge flowing through them by 
changing their resistances (memristance) [17]. The unique properties create great oppor-
tunities in future system design. For instance, HP researchers proposed a memristor-
based architecture, which could change the standard paradigm of computing by enabling 
calculations to be performed in the chips where data is stored, rather than in a specialized 
central processing unit [18]. Moreover, the applications of this memristive behavior in 
electronic neural network have been extensively studied [19-20]. 
 
Figure 1(a) illustrates the conceptual view of Pt/TiO2/Pt structure: two orthogonal metal 
wires (Pt) serve as the top and bottom electrodes with a thick titanium dioxide film sand-
wiched in between. A perfect TiO2 structure in its natural state is as an insulator. Howev-
er, the conductivity of oxygen-deficient titanium dioxide (TiO2-x) is much higher. By 
moving the doping front under proper electrical excitations, intermediate memristive 
states can be achieved. We use RH and RL to denote the total resistance when a TiO2 
memristor is fully undoped (maximum high resistance) and doped (minimum low re-
sistance), respectively. The overall memristance is then the equivalent of two serially-
connected resistors, as shown in Figure 1(b). That is 
 

M (α) = α · RL + (1 − α) · RH,                                 (3) 
 
where α (0 ≤ α ≤ 1) is the relative doping front position, which is the ratio of the doping 
front position over the total thickness of the TiO2 device.  
 

             
 

     (a) TiO2 Memristor Stucture           (b) Equivalent Circuit 

Figure 1.   TiO2 thin-film memristor 
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3.2. The Memristor-based Logic Design 

 
3.2.1 The Principle of Memristor-based Synapse. Rather than using a memristor crossbar 

array in a neuromorphic reconfigurable architecture, we proposed a memristor-based 
synapse design to mimic the biological structure. Figure 2 depicts the conceptual scheme, 
which simply consists of an NMOS transistor (Q) and a memristor. When the input Vin is 
low, the transistor Q is turned off. Thus, the output Vout is connected to ground through 
the memristor. Conversely, when Vin is high, turning Q on, the memristance M and the 
equivalent transistor resistance (RQ) together determine Vout, 
 

Vout = f (Vin · M),                                                                 (4) 
 
where Vout is weighted by the memristance. This variable weight can be treated like a 
synapse. 
 

   
 

Figure 2: A memristor-based synapse design 
 

Note that the response of the synapse design was dependent on the equivalent resistance 
(effectively, the size) of the Q transistor (RQ). A larger Q would offer a wider range of 
Vout with poorer linearity. However, for a large Q, the increased range of Vout by further 
size increase would be marginal. The simulation results showing this can be found in 
Section 4.1.1. 
 
To improve design stability, a buffer can be added at output of the synapse to increase the 
voltage swing. Furthermore, some circuit optimization techniques, such as asymmetry 
gates in other blocks, can be used to minimize the overall synapse-based system.  
 

3.2.2 Synapse Training Circuit. Being self-adaptive to the environment is one of the most 
important properties of a biological synapse. To accomplish a similar functionality, a 
training block is needed in the memristor-based synapse to adjust its memristance.  

 
The training circuit compares the generated result Vout and the expected result Dtrain to 
decide if training is needed or not. The corresponding Vtop and Vbot are generated and 

Vout = Vin  M 
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applied to the two terminals of a memristor. Figure 3 is the symbol of the synapse train-
ing circuit.  
 

 
 

Figure 3: Synapse training circuit symbol 
 
Figure 4 shows the diagram of a training circuit for a one synapse design based on logic 
analysis and simplification. It included two major components: a training controller and 
a write driver. By comparing the current synapse output Vout and the expected output 
Dtrain, the training controller generated the control signals. The write driver used these 
signals to control two pairs of NMOS and PMOS switches and supply the training voltage 
pair Vtop and Vbot. The training pair was then applied to the two terminals of the memris-
tor in the synapse design.  
 

 
 

Figure 4.  Synapse training circuit diagram 
 

Table 1 summarizes the operation conditions of the proposed training circuit design. The 
training circuit can work under two modes determined by the training enable signal E.  
 

Table  1.   Training Circuit Operation Conditions 

 

E Vout Dtrain Vtop Vbot Vmem Status 

0 X X Floating 0 X Operating 
1 1/0 1/0 0 0 0V No training 
1 1 0 1 0 1.8V RH to RL 
1 0 1 0 1 -1.8V RL to RH 
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* ‘0’ logic low; ‘1’ logic high, and ‘X’  unknown or don’t care. 
 
 Operating mode: When E = 0, the synapse operated in the regular (read) mode; and 

the training circuit was disabled. 
 Training mode: The training circuit was enabled when E = 1. By comparing the cur-

rent synapse output Vout and the expected Dtrain, the training circuit generated Vtop 
and the Vbot applied to the two terminals of the memristor to update or keep its 
memristance. We define Vmem = Vtop – Vbot.  

 
Figure 5 depicts the proposed memristor-based synapse integrated with training circuit. 
An extra NMOS transistor Q2 was inserted in the synapse to isolate training operation 
from other voltage sources. When E = 1, Q2 was turned off so that the two terminals of 
memristor were controlled only by the training circuit and not by Vin.  
 

 
 

Figure 5.  Synapse together with training circuit 

 
3.2.3 Multi-synapse Training Scheme. Most of the neuron systems are constructed by multi-

ple synapses. In this section, we discuss the corresponding training scheme for a 2-synapse 
neuron, of which Figure 6 is an example. Here, A1 and A2 were two synapse inputs re-
ceived from other neurons. M1 and M2 are memristor-based weights for the two synapses 
S1 and S2. N denoted a neuron with output Vout. The value of Vout depended upon the 
functionality of N as well as Vout1 and Vout2 from the two synapses. With the different 
combinations of M1 and M2, the two-input neuron obtained different functionalities.  
 

 
 

Figure 6. Two-input neuron structure 
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To save design cost, memristances of the 2-synapse can be trained separately and share 
one training circuit. Figure 7 shows a training sharing distribution circuit, which generat-
ed training signals to control M1 and M2. The training sharing circuit operations under 
different conditions are shown in Table 2.  
 
The two synapse inputs A1 and A2 can be used to determine which memristor, M1 or M2, 
was in training. Table 3 lists the required A1 and A2 when the logic functionality of N was 
one of the following: OR/NOR, XOR/XNOR, AND/NAND. 
 

 
 

Figure 7. Training sharing distribution circuit 

 
 

Table 2. Training Sharing Circuit Operation 

 

Status Vtop1 Vbot1 Vtop2 Vbot2 

Training M1 Vtop Vbot Floating 0 
Training M2 Floating 0 Vtop Vbot 

 
 

Table 3.  Synapse Input Pairs for Different Logic Values 

 

Functionality of N Training M1 Training M2 

OR/NOR A1 = 1, A2 =0 A1 = 0, A2 = 1 
XOR/XNOR A1 = 1, A2 =0 A1 = 0, A2 = 1 
AND/NAND A1 = 1, A2 =1 A1 = 1, A2 = 1 

 

E
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A2

Vtop

Vbot

Transmission

Gate 

Transmission
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3.2.4 Training Block Sharing Scheme. Since the two memristors could be trained separately, 
it was possible to share a training circuit between two synapses. By doing this, we 
achieved the same functionality but with reduced design cost. The design diagram of the 
2-synapse shared training circuit and the sharing distribution circuit are depicted in Fig-
ure 8.  

 

       
 

Figure 8.  2-synapse shared training circuit and sharing distribution circuit   

 

3.2.5 Two-level OR Neuron Training Strategy. Expanding the synapse design to multiple 
levels can provide a more powerful reconfigurable design. For example, Figure 9 shows a 
2-level OR neuron circuit built with the previous 2-synapse structure. Such a design can 
achieve 16 possible logics at output.  
 

 
 

Figure 9. Two-level OR neuron circuit and possible logic values table 

 
Detailed analysis showed that the memristances of M5 and M6 did not introduce more 
logic functionality. Training only M1 through M4 and keeping M5 and M6 all high 
achieved all 16 possible logic functions. Similar to 2-synapse training, we trained M1 – 
M4 separately by activating one synapse branch at a time. To do this, we applied ‘1’ to 
the input of the activated branch and ‘0’ to the inputs of all the other branches. For exam-
ple, to train M1, we set A1 = 1 and A2 = A3 = A4 = 0.  
 
Figure 10 illustrates the training steps. We used the same training case, where M1 
through M4 were set high at the beginning, trained to low, and then finally trained back to 
high again.  
 

Vout=A1M1M5+A2M2M5+A3M3M6+A4M4M6 

0 1

A1, A2, A3, A4 4

A1+A2, A1+A3, A1+A4, A2+A3, A2+A4, A3+A4 6

A1+A2+A3, A1+A2+A4, A1+A3+A4, A2+A3+A4 4

A1+A2+A3+A4 1
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Figure 10.  Two-synapse shared training strategy 

 
3.2.6 Ten-synapse Circuit. Figure 11 gives an example of a 3-level design with ten synapses. 

Each sub-block was composed of two synapses with an OR gate as the neuron function. 
M1 – M10 were used to denote the weights of the ten synapses in the circuit. The func-
tionality of this structure can be summarized as  

 
Vout = A1 · X1 + A2 · X2.                                                        (5) 

 
 

 
 

Figure 11. 10-synapse OR neuron circuit 

 
X1 and X2 are simplified combinations of M1 – M10. Theoretically, this circuit had the 
same functionality as the 2-synapse structure OR neuron. However, the redundant design 
was more robust with a higher fault tolerance. Even if some devices were damaged, the 
structure could be self-healed and obtain the required logic. For example, when M5 and 
M6 were open and appeared as high memristance due to process damage, Vout could still 
execute the four logic combinations.   
 
In this design, we kept M5 – M10 as high all the time and trained M1 – M4 only. Apply-
ing ‘1’ to A1 and ‘0’ to A2 trained M1 and M3 simultaneously. We then applied ‘0’ to A1 
and ‘1’ to A2 to train M2 and M4 at the same time. Figure 12 illustrates this training 
scheme. 
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Figure 12.  Timing diagram of 10-synapse circuit training 

 
 

3.3. Case Study – Synapse-based ALU Design 

 
We designed an 8-bit arbitrary logic unit (ALU) by using memristor-based synapses. The 
ALU can be used for addition, subtraction, and counting. In the project, we completed the 
circuit design, simulation, layout, and functionality verification. The design details are 
explained in the following section.  
 

3.3.1 1-bit Adder-Subtractor Block. Figure 13 shows the schematic of the 1-bit adder-
subtractor block built by synapses.  
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Figure 13. Schematic of 1-bit adder-subtractor block 
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The full adder had three inputs (IN0, IN1, and C0) and two outputs (Sum and Carry) with the 
following relations: 

 
              

                 (       )
.                           (6) 

 
This full adder design could be used as an unsigned subtractor by inverting the subtra-
hend and setting C0 = 1,  
 

           ̅̅ ̅̅̅    
             ̅̅ ̅̅̅     (       ̅̅ ̅̅̅)

.    (7) 

 
In the 1-bit adder-subtractor design, three synapse blocks bridged the input signals and 
activation functions. Based on the required functions, i.e., adding or subtracting, the 
weights in these synapses could be trained accordingly. For details of the synapse design, 
refer to Section 3.2.  
 

3.3.2 Binary Counter. An m-bit binary counter used n digital bits to represent 2m numbers. It 
incremented by 1 for every clock cycle and started over from 0 if all the digital bits were 
1’s. We assumed the outputs of an m-bit binary counter at nth clock cycle and the (n + 1)th 
clock cycle were             

  and                 
   , respectively. Then we 

had 
 

  
      

 

  
      

      
  (           )

    (8) 

 
We used m-pieces of the above adder-subtractor blocks to build a binary counter. For ex-
ample, Figure 14 shows a 4-bit counter based on the adder-subtractor blocks.  
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Figure 14. Schematic of 4-bit binary counter built with adder-subtractor blocks 

 

3.3.3 Decade Counter. A decade counter has four output pins to represent decimal numbers 0 
– 9. The corresponding binary outputs are from ‘0000’ to ‘1001’. On the rising edge of 
each clock cycle, the output increased 1 or reset back to ‘0000’ after it reached ‘1001’.  
By properly modifying the adder-subtractor block design, we also build up a decade 
counter. 
 
We assumed that the outputs of a decade counter at nth clock cycle and the (n + 1)th clock 
cycle were                    and                             , respectively. Based on 
the Karnough map, we had 
 

  
      

 ,       (9a) 
 

  
       

   
    

   
   

  ,     (9b) 
 

  
       

   
     

   
    

   
   

 ,    (9c) 
 

  
       

   
     

   
   

 .     (9d) 
 

Eq. (9a) could be realized with a 1-bit adder by setting      ,      , and       . 
So                 

    
 . 
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Eq. (9b) could be transformed to              (     )                        
(  
    

 ). This form had the similar shape as the       output in Eq. (7) and hence we 
could obtain Eq. (9b) by setting        ,        , and       . 
 
By using DeMorgan’s Law, Eq. (9c) could be changed to          (       )  
  
   

   
    

  (  
   

 ). By slightly modifying the adder-subtractor block as shown in 
Figure 15, one could realize Eq. (9c). 
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Figure 15. Schematic of the modified adder-subtractor block to realized Eq. (9c) 

 
Similarly, we could add one inverter and two synapse blocks in the adder-subtractor 
block to realize Eq. (9d), as seen in Figure 16.  
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Figure 16. Schematic of the modified adder-subtractor block to realized Eq. (9d) 

 

3.3.4 4-bit ALU as Adder, Subtractor, and Decade Counter. Figure 17 shows the schematic 
of a 4-bit ALU, which could add, subtract, and count decimal numbers. 
 

3.3.5 8-bit ALU as Adder, Subtractor, and Decade Counter. We built an 8-bit ALU unit by 
using the basic block shown in Figure 18. It could conduct 8-bit addition, subtraction, or 
binary counting. The design contained ~100 synapses. In development, we adopted a 
CMOS-only design in order (a) to demonstrate the design concept and (b) to avoid the 
risks due to immature memristor fabrication process. Taiwan Semiconductor Manufactur-
ing Co. (TSMC) 0.18m technology was used for cost reduction. The schematic and lay-
out are shown in Figure 18 and Figure 19, respectively. 
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Figure 17.  Schematic of a 4-bit ALU as adder, subtractor, and decade counter 

 



Approved for Public Release; Distribution Unlimited.  

16 

 
 

Figure 18. Schematic of a 8-bit ALU as adder, subtractor, and binary counter 
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Figure 19. Layout of a 8-bit ALU as adder, subtractor, and binary counter 
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4.0 RESULTS AND DISCUSSION 

 
In the section, we will show the corresponding simulation results to validate the effec-
tiveness of the proposed memristor-based synapsed based design. Also, the functionality 
of the ALU case study as an adder, subtractor, and binary counter will be verified.  
 

4.1. Simulation Verification of Memristor-based Logic Design 

 
4.1.1 The Memristor-based Synapse. Figure 20 shows the relation of the input and output 

signals of a memristor-based synapse proposed in Figure 2. Here, Vin was the input of the 
synapse design; and Vout represented its output signal. When Vin was low, Vout was 
connected to ground through the memristor and hence was low. When Vin rose high, 
Vout was at an intermediate value, which was determined by the memristance M together 
with the equivalent resistance of Q (RQ). 
 

 
 

Figure 20. Output response of a synapse when memristor is at high resistance state  

 
Figure 21 shows the response of Vout for changing memristance from 1KΩ to 16KΩ. 
Here, CMOS devices used TSMC 0.18m technology. In general, Vout increased as the 
memristance becomes higher. The response of the synapse design relied on the equivalent 
resistance of the transistor Q (RQ), or the size of Q. This was demonstrated in Figure 21 by 
sweeping the width of Q from 220 nm to 4.4 m in 220 nm steps. The simulation showed 
that a larger Q can result in a wider range of Vout but with poorer linearity. However, for 
a large Q, the enhancement of Vout by further increasing its size was marginal. 
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Figure 21. Output voltage of a memristor-based synapse vs. memristance  

 
To improve design stability, a buffer can be added at the output of the synapse to increase 
the voltage swing. Furthermore, some circuit optimization techniques, such as an asym-
metry gate in other blocks, could be used to minimize the overall synapse-based system.  
 

4.1.2 Synapse Training Circuit. The timing diagram of training circuit is demonstrated Figure 
22. Before a training procedure starts, a sensing step was required to detect the current 
Vout to be compared with Dtrain. In the sensing phase, accordingly, training enable signal 
E was set to low for a very short period of time, e.g., 4.5 ns, at the beginning of training. 
At the same time,     ̅̅ ̅̅ ̅ was sent to Latch, whose output     ̅̅ ̅̅ ̅   remained constant during 
one training period, as shown in Figure 4. In the training phase, E was set back to high for 
a much longer time, i.e., 51 ms, to change the memristance if needed.  

 

 
 

Figure 22. The timing diagram of training circuit  
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We tested the training procedure using the TiO2 memristor model [4]. The training circuit 
was designed with TSMC 0.18m technology with VDD = 1.8 V. Changing the 
memristance from RH to RL or verse vice required about 51 ms. The simulation result is 
shown in Figure 23. Here, the memristance was initialized to M = 16 KΩ. Over the first 51 
ms, the memristor was trained to 1 KΩ by setting Dtrain to low. Then at t = 51 ms, we set 
Dtrain to high and trained the memristance back to RH in the following 51 ms.  
 

    
 

Figure 23. The simulation result of memristor training  

 
4.1.3 Asymmetric Gate Design. Since the size of Q1 affects the range of Vout, the asymmetry 

gate design can be adopted to minimize the layout area of synapse design instead of add-
ing a buffer or having a giant Q1 in the synapse. More specifically, we tuned the P-type/N-
type transistor (P/N) ratio of INV1 of the training circuit in Figure 4. Table 4 summarized 
the required sizes of INV1 and Q1 under different combinations of successful training pa-
rameters. The result shows that the asymmetric design with P/N ratio = 0.5 can obtain the 
smallest area. The last option was used in the following synapse analysis.  

 

Table  4.   Sizing of INV1 and Q1 

 

P/N Ratio PMOS/NMOS in INV1 Q1 

2 720 nm/ 360 nm  18  220 nm 
440 nm/ 220 nm 16  220 nm 

1 360 nm/ 360 nm 12  220 nm 
220 nm/ 220 nm 11  220 nm 

0.5 360 nm/ 360 nm 9  220 nm 
220 nm/ 440 nm 9  220 nm 
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4.1.4 2-Synapse Design with an OR Logic Neuron. To demonstrate the functionality of a cir-
cuit composed of multiple synapses, we used a 2-synampse circuit with an OR logic neu-
ron. The functionality of this structure could be summarized as  

 
Vout = A1 · M1 + A2 · M2.                                                      (10) 

 
Based on M1 and M2 combinations, the structure could be configured into four possible 
logics: 0, A1, A2, and A1+A2. Eq. (5) shows that M1 and M2 are independent to each 
other. We could also train each path separately. By applying ‘1’ to A1 and ‘0’ to A2 and 
comparing Vout and Dtrain, we can train the memristor M1. Similarly, the memristor M2 
can be trained independently by applying ‘0’ to A1 and ‘1’ to A2.  
 

 
 

Figure 24. A design with two synapses and its four possible outputs 

 
We could use two one-cell training block shown in Figure 4 to train M1 and M2 individu-
ally. Such a 2-synapse circuit with training blocks is shown in Figure 25. Here, we add 
Q2 and Q4 to help control the synapse training. When training enable E was low, both Q2 
and Q4 were turned on to generate Vout1 and Vout2, respectively. When E was high and 
the circuit was in training mode, either Q2 or Q4 was turned off to train M1 or M2, respec-
tively. The two PMOS transistors Q2 and Q4 were used to control the access of two dif-
ferent memristor rail paths, i.e., synapse 1 and synapse 2, when either reading or training. 
 
The simulation result is also shown in Figure 25. This case study started with both M1 
and M2 as high. First, we separately trained them to low and then changed them back to 
high again. To verify the training results, a logic test was conducted before and after a 
training. There are three logic tests in Figure 25(a). The logic test (nanoseconds) was 
much faster than the training process (milliseconds). Hence, we highlighted the inset of 
the logic tests at 0 s, 200 ms, and 400 ms, in Figure 25(b-d), respectively.  
 

Vout= A1  M1 + A2  M2  
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Figure 25. The 2-synapse training circuit an simulation results  

 
At the beginning (t = 0 s), M1 = M2 = 1 and Vout = A1 + A2. After training (t = 200 ms), 
M1 and M2 were low, M1 = M2 = 0, and Vout remained at 0 without respect to any ap-
plied input. By t = 400 ms, both memristances were trained back to high, and Vout = A1 + 
A2. The timing diagram in Figure 26 graphically depicts our training strategy.  

 

 
 

Figure 26. The timing diagram of a 2-synapse training procedure  
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4.1.5 Self-training mode. To improve the training time and reduce power consumption, we 

introduced the concept of self-training to our design. Rather than using a fixed long train-
ing period, i.e., 51 ms, the self-training mode automatically stopped programming the 
memristor whenever Vout and Dtrain became the same.  
 
The proposed training circuit supported a self-training mode by dividing a long training 
period into multiple shorter periods and detecting Vout between the periods. The pro-
gramming period needed to be carefully selected. If it was too short, the delay and energy 
overhead induced by Vout detection might overwhelm the benefit of self-training. On the 
contrary, a long programming period would not show significant improvement.  
 
The simulation result in Figure 27 shows the memristance change over increasing pro-
gramming periods from (5.1 to 51) ms in 10ms steps. Obviously, the self-training mode 
could significantly reduce the required training time. In theory, the proposed training cir-
cuit could train the memristance to any value between RH and RL. The training time in 
practice would be determined by the specific application and neuron functionality.  

 

 
 

Figure 27.  Self-training simulation 

 
4.1.6 Power Analysis. The expected power consumption of reading and training operations are 

presented in Table 1. The energy value was obtained for a set read time and write time of 
4.5 ns and 51 ms, respectively. Compared to the separated training circuit for each 
memristor, the shared scheme could reduce 26% of training circuit transistor count. More 
saving in cost and area can be obtained when utilizing this training sharing distribution 
scheme to multi-synapse structure with more inputs.  
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Table 5.   Synapse Power Consumption Analysis 

 
Operation Power Energy 

Read 
RL 1.04 mW 4.68 pJ 
RH 113.4 uW 0.51 pJ 

Training 
From RH to RL 216.7 uW 11.1 uJ 
From RL  to RH 234 uW 11.9 uJ 

 
 

4.2. The Functionality Verification of 8-bit ALU Design 

 
In this section, we will demonstrate addition, subtraction, and counting functionalities of 
the proposed synapse-based ALU design. Though our simulations proved the functionali-
ty of the ALU design, it is impractical to graphically present all possible input combina-
tions. Only a few representative input combinations are presented.  
 

4.2.1 Addition. Figure 28 is the simulation result of the addition function. In the first testing 
period, we set the addend and summand to ‘10011001’ and ‘00010010’, respectively. Af-
ter 16 ns, we change the summand to ‘00111011’. The first expected final result 
‘10101011’ was achieved after 4.46 ns, and the second expected final result ‘11010100’ 
was achieved after 22.9 ns. 
 

 
 

Figure 28. Simulation results of the 8-bit adder 
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4.2.2 Subtraction. Figure 29 is the simulation result of subtraction function. In the first testing 
period, we set the minuend and subtrahend as ‘10011001’ and ‘00010010’, respectively. 
After 16 ns, we changed the minuend and summand to ‘11011001’ and ‘00111000’, re-
spectively. The first expected final result ‘01011110’ was achieved after 5.12 ns and the 
second expected final result ‘10100001’ was achieved after 27.15 ns.  

 

 
 

Figure 29. Simulation results of the 8-bit subtractor 

 
4.2.3 Binary Counting. Figure 30 presents the simulation results for an 8 ns clock period 

applied to the 8-bit binary counter. 
 

 
Figure 30. Simulation results of the 8-bit binary counter 
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5.0 CONCLUSIONS 

 
In this project, we proposed a novel synapse design based on the emerging memristor 
technology. The corresponding logic design to enable the adaptive logic functionality in-
cluding the synapse design scheme, training circuitry, multi-level synapses, and training 
strategy was investigated. The proposed synapse design can be used to construct recon-
figurable systems. A two level synapse design was used to illustrate the design and train-
ing concept. Then an 8-bit ALU capable of realizing addition, subtraction, and binary 
counting functionality was designed and verified using TSMC 0.18µm technology. Lay-
out for fabrication was completed for this design. 
 
In the next stage of our project, we plan to extend our research of the memristor-based 
reconfigurable system design into a broader context, including developing the design au-
tomation design flow and the scalable design methodology of large-scale synapse cir-
cuits.  
 
 

6.0 REFERENCES 

 
[1] J. Partzsch and R. Schuffny, “Analyzing the Scaling of Connectivity in Neuromorphic 

Hardware and in Models of Neural Networks,” IEEE Transactions on Neuron Networks, 
2011, pp. 929-935. 

[2] M. Wang, B. Yan, J. Hu, and P. Li, “Simulation of large neuronal networks with biophys-
ically accurate models on graphics processors,” International Conference on Neural Net-

works, 2011, pp. 3184-3193. 

[3] H. Shayani, P.J. Bentley, and A.M.Tyrrell, “Hardware Implementation of a Bio-plausible 
Neuron Model for Evolution and Growth of Spiking Neural Networks on FPGA,” 
NASA/ESA Conference on Adeptive Hardware and Systems, 2008, pp. 236-243. 

[4] L. Chua, “Memristor-the missing circuit element,” IEEE Trans. on Circuit Theory, vol. 
18, 1971, pp. 507-519. 

[5] D. B. Strukov, et al., “The missing memristor found,” Nature, vol. 453, 2008, pp. 80-83. 

[6] X. Wang, et al., “Spintronic memristor through spin-torque-induced magnetization mo-
tion,” IEEE Electron Device Letters, vol. 30, 2009, pp. 294-297. 

[7] S. H. Jo, et al., “Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” 
Nano Letters, vol. 10, no. 4, March 2010, pp. 1297-1301. 

[8] Y. Ho, G. Huang, and P. Li, “Nonvolatile memristor memory: Device characteristics and 
design implications,” International Conference on Computer-Aided Design (ICCAD, 
2009), pp. 485-490. 



Approved for Public Release; Distribution Unlimited.  

27 

[9] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with memristor-based re-
configuration,” International Symposium on Nanoscale Architectures, 2011, pp. 1-8. 

[10] J. Rajendran, H. Manem, R. Karri, and G. Rose, “Memristor based programmable thresh-
old logic array,” IEEE/ACM International Symposium on Nanoscale Architecture, Jun. 
2010, pp. 5–10. 

[11] G. Rose, R. Pino, and Q. Wu, “Exploiting Memristance for Low-Energy Neuromorphic 
Computing Hardware,” IEEE International Symposium on Circuits and Systems (ISCAS), 
2011, pp. 2942-2945. 

[12] V. Erokhin and M. P. Fontana, “Electrochemically controlled polymeric device: a 
memristor (and more) found two years ago,” 2008. 

[13] J. H. Kriegerand and S. M. Spitzer, “Non-traditional, non-volatile memory based on 
switching and retention phenomena in polymeric thin films,” Non-Volatile Memory 

Technology Symposium, 2004, pp. 121-124. 

[14] Y. Huai, “Spin-Transfer Torque MRAM (STT-MRAM): Challenges and Prospects,” 
AAPPS Bulletin, vol. 18, December 2008, pp. 33. 

[15] P. Krzysteczko, G. Reiss, and A. Thomas, “Memristive switching of MgO based 
magnetic tunnel junctions,” Applied Physics Letters, vol. 95, 2009, pp. 112508-3. 

[16] K. K. Gullapalli, A. J. Tsao, and D. P. Neikirk, “Multiple self-consistent solutions at zero 
bias and multiple conduction curves in quantum tunneling diodes incorporating N--N+-N- 
spacer layers,” Applied Physics Letters, vol. 62, 1993, pp. 2971-2973. 

[17] D. Strukov, J. Borghetti, and S. Williams, “Coupled ionic and electronic transport model 
of thin-film semiconductor memristive behavior,” Small, vol. 5, 2009, pp. 1058-1063. 

[18] Webwire, “Memristor could Enable Memory Chip Computation,” [Online], Available: 
http://www.webwire.com/ViewPressRel.asp?aId=115179 [Accessed: April 9, 2010]  

[19] Y. V. Pershin, et al., “Experimental demonstration of associative memory with memris-
tive neural networks,” Nature Proceedings, 2009. 

[20] H. Choi, et al., “An electrically modifiable synapse array of resistive switching memory,” 
Nanotechnology, vol. 20, 2009, pp. 345201. 

 

  



Approved for Public Release; Distribution Unlimited.  

28 

APPENDIX A - Publications and Presentations 

 
1. H. Li and R. E. Pino, Statistical Memristor Model and Its Applications in Neuromorphic 

Computing, a book chapter in Advances in Neuromorphic Memristor Science and Applica-

tions, edited by R. Kozma, R. E. Pino, and G. Pazienza, Springer, 2012.  
 

2. Y.-C. Chen, H. Li, W. Zhang, and R. Pino, “3-Dimensional High-Density Interleaved 
Memory for Bipolar RRAM Design,” to appear in IEEE Transaction on Nanotechnology.  
 

3. H. Li, R. Pino, Y. Chen, M. Hu, and B. Liu, “Statistical Memristor Modeling and Case Study 
in Neuromorphic Computing,” Design Automation Conference (DAC), June 2012, pp. 585-
590.  
 

4. H. Wang, H. Li, and R. E. Pino, “Memristor-based Synapse Design and Training Scheme for 
Neuromorphic Computing Architecture,” International Joint Conference on Neural Networks 

(IJCNN), June 2012. 

 
5. X. Bi, C. Zhang, H. Li, Y. Chen, and R. Pino, “Spintronic Memristor Based Temperature 

Sensor De-sign with CMOS Current Reference,” Design, Automation & Test in Europe 

(DATE), Dresden, Germany, March 2012, pp. 1301-1306. 
 

6. M. Hu, H. Li, and R. E. Pino, “Statistical Model of TiO2 Memristor and Applications,” Inter-

national Conference on Computer Aided Design (ICCAD), November 2011, pp. 345-352. 
 

7. Y.C. Chen, H. Li, W. Zhang, and R. Pino, “3D-HIM: A 3-Dimensional High-Density Inter-
leaved Memory for Bipolar RRAM Design,” IEEE/ACM International Symposium on Na-

noscale Architectures (NANOARCH), June 2011, pp. 59-64.  
 

8. Y.C. Chen, H. Li, Y. Chen, and R. Pino, “3D-ICML: A 3D Bipolar ReRAM Design with In-
terleaved Complementary Memory,” Design, Automation & Test in Europe Conference and 

Exhibition (DATE), March 2011, pp. 1-4. 
 

9. M. Hu, H. Li, Y. Chen, X. Wang, and R. E. Pino, “Geometry Variations Analysis of TiO2–
based and Spintronic Memristors,” the 16th Asia and South Pacific Design Automation Con-

ference (ASPDAC), Jan. 2011, pp. 25-30. (Best Paper Nomination, 1 out of 28 in track, 

3.6%)  
 

10. M. Hu, H. Li, Y. Chen, and R. E. Pino, “Statistical Model of TiO2 Memristor,” the 48th De-

sign Automation Conference (DAC), in WIP track, June 2011. 
 

 
 
 
 



Approved for Public Release; Distribution Unlimited.  

29 

LIST OF ABBREVIATIONS AND ACRONYMS 
 
ALU    arbitrary logic unit 
P/N    P-type/N-type transistor 
TSMC   Taiwan Semiconductor Manufacturing Co. 




